Density Functional Studies on Crystal Structure and electronic properties of Potassium Alanate as a candidate for Hydrogen storage
نویسندگان
چکیده مقاله:
Potassium Alanate is one of the goal candidates for hydrogen storage during past decades. In this report, initially the Density Functional Theory was applied to simulate the electronic and structural characteristic of the experimentally known KAlH4 complex hydride. The relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev per unit cell. The final deduced cell parameters of this orthorhombic structure were a=8.834, b=5.763, c=7.328A˚. Calculations were carried out by using Projected Augmented Plane wave method via QUANTUM ESPRESSO Package. In the next step, the Density of States calculations together with band structure results, showed that our data coincide with a non-magnetic KAlH4 insulator with a band gap of 5.1ev. In order to investigate the nature of chemical bonds in the crystal structure, the charge density distribution in (100),(010),(001),(110) planes, along with Born Effective charge and Löwdin population was used. The results show the transition of a partial charge from K+ cation to [AlH4]- subunit which leads to an ionic bond.
منابع مشابه
density functional studies on crystal structure and electronic properties of potassium alanate as a candidate for hydrogen storage
potassium alanate is one of the goal candidates for hydrogen storage during past decades. in this report, initially the density functional theory was applied to simulate the electronic and structural characteristic of the experimentally known kalh4 complex hydride. the relaxation of unit cell parameters and atomic positions was performed until the total residual force reduced less than 0.001ev ...
متن کاملElectronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملelectronic properties of hydrogen adsorption on the silicon- substituted c20 fullerenes: a density functional theory calculations
the b3lyp/6-31++g** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, c20 (cage), c20 (bowl), c19si (bowl, penta), c19si (bowl, hexa). the h2 molecule is set as adsorbed in the distance of 3å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملThe effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملFunctional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.
Doping NaAlH(4) with Ti-catalyst has produced a promising hydrogen storage system that can be reversibly operated at moderate temperature conditions. Of the various dopant precursors, TiCl(3) was well recognized due to its pronounced catalytic effect on the reversible dehydrogenation processes of sodium aluminium hydrides. Quite recently we experimentally found that TiF(3) was even better than ...
متن کاملThe effect of alkaline earth metals (Magnesium and Calcium) on Hydrogen storage efficiency of alanate nanopowders
Different Aluminum: alkaline earth metal atomic weight ratios effects on structure transformations in alanates nanopowders were studied. Changes in crystal structures from alane to alanates by increasing alkaline earth metals dopants in the mixture with slight changes in crystal structures from rhombohedral centered – trigonal (alane) to trigonal (magnesium alanate), and monoclinic (calcium ala...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 3
صفحات 169- 179
تاریخ انتشار 2016-02-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023